TSI: Développement d'une IA légére sur un systeme embarqué
Rapport de projet

Maxime Hurtubise
& Hector Taler-Fraisse

4 BORDEAUX EﬂSBII‘h'
IN? matmeca

Développement d'une IA 1égére sur un systéme embarqué: Rapport de projet

4 BORDEAUX Enseirh_
IN P Matmeca

Table des matiéres

-

TSI

Introduction et analyse du probléme

Architecture MLP et CNN
21 Architecture MLP
2.2 Architecture CNN e

Résultats expérimentaux (entrainement et tests des modéles)

31 Gestion du jeu de données et split stratifié
3.2 Protocole dentrainement
3.3 Analyse des performances.

Export et chargement des poids

41 Export des parameétres (Python)
4.2 Chargementen mémoire (C)
4.3 Correspondance des dimensions

Description de la chaine de prétraitement (inférence)

5.0 Caractéristiques du jeu de données MNIST
5.2 Réductiondelazoned’intérét
5.3 Binarisation et détection de contours
5.4 Extraction et préparationduchiffre
5.5 Redimensionnement et alignement du barycentre
5.6 ~Paddingetformatfinal
5.7 Normalisationdesvaleurs
5.8 Outil de validationvisuelle
5.0 Illustration du pipeline de prétraitement

Structure de 'implémentation C

6.1 Architecture modulaire L
6.2 Module neural_network
6.3 Module process_frame L L.
6.4 Module contour_detection
6.5 Module contour_selector
6.6 Module digit_extractor o
67 Modulemain.
6.8 Fluxdedonnées
6.9 Compilation et dépendances
6.10 Modularité et extensibilité

Comparaison du MLP et du CNN avec une étude statistique

71 Précision de classification
72 Tempsdinférence
7.3 Matricedeconfusion
7.4 Analyse L
7.5 Interprétation des métriques
7.6 Conclusion

Guide de déploiement sur Raspberry Pi

81 Prérequis
82 Installation
8.3 Démarrage de l'application
8.4 Autrescommandesutiles L.

Page 2 sur 19

.................. 10

EEEES

[o e e AV, |

NN NN

O O O O O O o0 oo N

10

.................. 10
.................. 1
.................. 1
.................. 12
.................. 12
.................. 12
.................. 13
.................. 13
.................. 13
.................. 14

14

.................. 14
.................. 15
.................. 15
.................. 15
.................. 15
.................. 15

16

.................. 16
.................. 16
.................. 16

.................. 17

SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

9 Conclusion 17
Annexes 18
A Spécifications et performances attendues pour l'application 18
B Chargementdumodele MLP 18
C Chargementdumodele CNN e 18

TSI Page 3 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

1 Introduction et analyse du probleme

Ce projet a pour but d'implémenter une application de détection et reconnaissance de chiffres manuscrits. L'application
doit étre légére pour pouvoir étre déployée sur une cible embarquée. Dans notre cas, le déploiement se fera sur une Rasp-
berry Pi 5 via une application complétement conteneurisée avec Docker. Les performances attendues sont renseignées en
annexe A. Ces dernieres doivent étre atteintes sur un dataset de test personnalisé de chiffres manuscrits imprimés puis
filmés par la caméra embarquée sur la Raspberry Pi 5.

Parmis les défis principaux de ce projet nous pouvons souligner :

+ Lentrainement de modeles 1égers d’IA afin de les rendre performants non seulement sur MNIST mais aussi sur des
données provenant d'un dataset personnalisé (ici notre dataset personalisé).

« Limplémentation de l'application entiére via un code optimisé en C/C++, y compris les modéles de réseaux de
neurones (CNN et MLP) afin d’atteindre les performances attendues.

« La gestion des différents environnements de développement et execution via Docker.

2 Architecture MLP et CNN

Pour mener a bien le projet, 'entrainement des modeéles et leur inférence au niveau de I'application se feront dans deux
environnements différents. Pour I'entrainement, nous utiliserons Pytorch avec Python dans un conteneur Docker con-
tenant toutes les bibliotheques nécéssaires aux expérimentations. L'applicatif supportant I'inférence sera lui déployé via
un autre conteneur et exécutera l'application en C/C++. Nous définissions deux architectures : un MLP et un CNN,
les plus simples possibles pour obtenir une baseline et comparer les résultats obtenus avec ceux attendus dans le cahier
des charges (Annexe A). Les modeles décrit par la suite sont définis avec Pytorch dans les fichiers suivants du livrable :
train_cnn.py et train_mlp.py.

2.1 Architecture MLP

Larchitecture du MLP est extrémement minimaliste et n’est composée que d'une seule couche caché de 512 neurones. La
couche cachée (Couche Dense 1) totalise (784 entrées X 512 neurones) + 512 biais = 401 920 paramétres. La couche de
sortie permet de revenir a 10 sorties chacune représentant la probabilité d’appartenance de I'image d’entrée a un chiftre.

Opération Type de couche | Dimensions de sortie | Parameétres
Entrée Image MNIST 1 x 28 x 28 o
Aplatissement Flatten 784 o

Couche Dense 1 Linéaire + ReLU | 512 401920
Couche de Sortie | Linéaire 10 5130

Total 407 050

Table 1: Détails de I'architecture du modéle MinimalMLP.

2.2 Architecture CNN

Le modeéle CNN (Convolutional Neural Network) est congu pour capturer les dépendances spatiales des chiffres tout en
restant léger pour l'inférence. Les résultats de nos entrainements (détaillés dans la partie suivante) montrent que cette
force lui permet de conserver une bonne précision pour des données qui s'‘éloignent du set d’apprentissage, contrairement
au MLP. Notre architecture de CNN utilise deux couches de convolution avec un stride de 2, permettant de diviser par
deux la résolution spatiale a chaque étape sans avoir recours a une couche de Pooling explicite.

TSI Page 4 sur 19 SEMESTRE o9 - Jan. 2026

i NP Ensgirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

Opération Configuration Dimension Sortie | Activation | Parametres
Entrée Image MNIST 1 x 28 x 28 - o
Convolution 1 16 filtres 5 X 5, st. 2 16 x 14 x 14 ReLU 416
Convolution 2 32 filtres 5 X 5, st. 2 32xTxT ReLU 12832
Aplatissement Flatten 1568 - o
Couche de Sortie | Linéaire 10 Softmax 15690
Total 28938

Table 2: Détails de I'architecture du modele CNN.

Le nombre de parametres dans chaque couche convolutive est calculé ainsi :
Nparams = (kd X kh X kw X CVin) CVout + C'out (1)

Dans cette expression, kg, ky, et k,, désignent respectivement la profondeur, la hauteur et la largeur du noyau de convo-
lution 3D, Cy, correspond au nombre de canaux en entrée, Cy au nombre de filtres de la couche, et Cy,, représente les
biais associés a chaque filtre.

Analyse comparative : Bien que le CNN semble plus "complexe" conceptuellement, il est environ 14 fois plus léger
en nombre de parametres que le MLP. Cette efficacité vient du partage de poids propre aux couches convolutives qui
devrait théoriquement offrir une meilleure robustesse face aux variations de position du chiffre dans I'image caméra.

3 Résultats expérimentaux (entrainement et tests des modéles)

Cette section détaille le protocole expérimental mis en place pour 'entrainement des modeles, la gestion du jeu de données
hybride, ainsi qu'une analyse des performances obtenues. Ci-dessous nous représentons des exemples de données origi-
nales de MNIST, de données de notre dataset personnel, et de ce dernier traité pour une conversion au format MNIST.
Nous utiliserons exclusivement les données de format MNIST pour les entrainement et I'inférence des modeéles qui sont
dimmensionnés et entrainés spécifiquement pour ce format.

2
=

(a) Exemples MNIST (b) Données Personnelles (c) Sortie mises au format MNIST

Figure 1: Comparaison des données MNIST de référence, des données personnelles brutes et du résultat aprés la chaine
de prétraitement.

TSI Page 5 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

3.1 Gestion du jeu de données et split stratifié

Ensemble | Ratio | Effectif | Usage principal

Train 80 % 200 Mise 4 jour des poids (Backpropagation)
Validation | 10% 25 Suivi de la généralisation et tuning

Test 10 % 25 Evaluation finale (données "aveugles")
Total | 100% | 250 |

Table 3: Répartition stratifiée du jeu de données personnel.

Le split est de type stratifié : la proportion de chaque classe (chiffres de o & 9) est conservée dans chaque sous-ensemble
(autant que possible comme les effectifs ne sont pas pairs pour la validation et le test). Les données sont organisées selon
la structure ImageFolder de PyTorch, facilitant leur chargement.

3.2 Protocole d’entrainement

Le défi majeur réside dans le déséquilibre entre le dataset MNIST (60 000 images) et notre dataset personnel (quelques
dizaines ou centaines d’images). Pour pallier a cela, nous avons adopté une stratégie de sur-échantillonnage : lors de la
création du train_dataset, les données personnelles sont répétées 50 fois et concaténées a MNIST.

Train_Total = MNIST U (50 X Perso_Train)

Les deux modeles ont été entrainés avec I'optimiseur Adam (learning rate de 0.001) et la fonction de perte CrossEn-
tropyLoss. Les statistiques de normalisation (i et o) ont été calculées sur 'ensemble global pour assurer une cohérence
parfaite entre l'entrainement et I'inférence en C. Nous notons la moyenne et la variance du dataset Train_total util-
isé pour l'entrainement du model afin d’effectuer la méme normalisation au niveau de l'inférence en C. On obtient des
statistiques légerement différentes de celles du dataset MNIST seul : Mean = 0.1305, Std = 0.3013

3.3 Analyse des performances

Les figures 6a et 6b présentent I'évolution de la perte (Loss) et de la précision (Accuracy) sur 10 epochs.

(a) Courbes MLP (b) Courbes CNN

Figure 2: Evolution de I'apprentissage sur les datasets hybrides.

Analyse du MLP : On observe une précision d’entrainement proche de 99 %, mais une précision de validation tres
instable oscillant entre 84 % et 88 %. La Val Loss a tendance a diverger, signe d’'un overfitting marqué. Le MLP "mémorise"
MNIST mais peine a généraliser les caractéristiques morphologiques de notre dataset personnel.

Analyse du CNN : Le CNN montre une meilleure robustesse. Bien que la précision de validation oscille également
(due a la petite taille du set de validation), elle atteint des pics plus élevés (jusqua 96 %). La perte de validation reste
globalement plus basse que celle du MLP, confirmant que I'extraction de caractéristiques spatiales par convolution est
mieux adaptée a la variabilité de nos prises de vues réelles.

TSI Page 6 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

4 Export et chargement des poids

Le transfert des poids (weights) et des biais (biases) du format PyTorch vers 'application C repose sur une symétrie
entre la classe Python et les structures de données en C.

4.1 Export des parameétres (Python)

PyTorch stocke les parameétres dans un dictionnaire ordonné (OrderedDict) suivant I'ordre de déclaration des couches. Le
script d’exportation parcourt ce dictionnaire viamodel .named_parameters () et linéarise chaque tenseur en une liste
continue de flottants avec la méthode . flatten() de NumPy.

Lordre d’écriture dans le fichier .txt est séquentiel : Poids de la couche n, suivis de ses biais ; Poids de la couche n + 1,
suivis de ses biais ; ...

4.2 Chargement en mémoire (C)

Pour intégrer ces données, 'application utilise des structures (MLPModel et CNNModel) dont l'organisation mémoire
correspond a l'architecture des classes Python, permettant de charger le fichier . txt par une lecture séquentielle simple.
Le code C alloue dynamiquement des pointeurs dimensionnés selon les parametres du modele. La fonction de chargement
remplit ensuite ces espaces dans 'ordre exact de 'exportation (Extrait des fonctions de chargement en Annexe B et C)

4.3 Correspondance des dimensions

La validité de I'inférence dépend de la cohérence entre les constantes du header C (INPUT_SIZE, KERNEL_SIZE, etc.) et
l'architecture Python. Le tableau 4 détaille le mapping pour le modéle CNN.

Composant Python | Structure C Taille (float)
layer1.0.weight model->convl_w 400
layerl.0.bias model->convl_b 16
layer2.0.weight model->conv2_w 12 800
layer2.0.bias model->conv2_b 32
fc.weight model->fc_w 15 680
fc.bias model->fc_b 10

Table 4: Mapping séquentiel entre les parametres PyTorch et les buffers C.

5 Description de la chaine de prétraitement (inférence)

La reconnaissance de chiffres manuscrits repose fortement sur la cohérence entre les données utilisées a 'entrainement
et celles fournies au réseau de neurones en phase d'inférence. Dans ce projet, les modeles ont été entrainés sur une base
de données personnelle, (mélange du jeu MNIST et de chiffres manuscrits). Les images de la BDD (Base De Données)
personnelle ont été soumises a un prétraitement similaire a celui de MNIST afin de respecter ses standards (format,
centrage et normalisation). Il est donc essentiel que les images issues de la caméra suivent rigoureusement ce méme
pipeline de prétraitement afin de garantir des performances de reconnaissance optimales.

TSI Page 7 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

‘ Flux Vidéo (Acquisition) ‘

’ Définition de la ROI ’

’ Binarisation Adaptative ’

’ Filtrage & Sélection de contour ’

’ Extraction de la Bounding Box ’

’ Centrage Barycentrique (20 x 20) ’

’ Padding & Lissage (28 x 28) ’

’ Normalisation (u, o) ’

‘ Vecteur d’entrée Inférence ‘

Figure 3: Pipeline technique de prétraitement (version compacte).

5.1 Caractéristiques du jeu de données MNIST
Le jeu de données MNIST est composé d'images de chiffres manuscrits (0—9) présentant les propriétés suivantes :
« Les chiffres sont représentés en blanc sur un fond noir.
« Chaque chiffre est contenu dans une image de taille 28 x 28 pixels.
+ Le chiffre occupe une zone centrale équivalente a un carré de 20 x 20 pixels.
« Le barycentre du chiffre est aligné avec le centre du carré 20 x 20.
« Une bordure de 4 pixels est ajoutée autour de ce carré pour obtenir la taille finale 28 x 28.
« Les valeurs des pixels sont normalisées avant I'inférence.
Afin d’assurer une compatibilité maximale avec le modele entrainé, ces contraintes doivent étre rigoureusement respectées
lors du traitement des images issues de la caméra.
5.2 Réduction de la zone d'intérét

Dans un premier temps, une Region of Interest (ROI) est définie au centre de I'image d’entrée. Cette ROI correspond a
environ 60 % de la hauteur et 30 % de la largeur de I'image.
Cette restriction spatiale permet :

+ de réduire la charge computationnelle,
« d’éviter la détection de contours parasites provenant de l'arriére-plan,

« de se concentrer sur la zone ou 'utilisateur est le plus susceptible de présenter un chiffre manuscrit.

TSI Page 8 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

5.3 Binarisation et détection de contours

L'image contenue dans la ROI est convertie en niveaux de gris, puis binarisée a 'aide d’'un seuillage adaptatif. Ce choix
permet de gérer des variations d’éclairage tout en mettant en évidence les structures du chiffre.
Une détection de contours est ensuite effectuée afin d’identifier les formes présentes. Chaque contour est évalué selon :

. son aire,

« son rapport largeur/hauteur,

« son taux de remplissage (rapport entre l'aire du contour et celle de sa boite englobante).
Le contour présentant le score le plus élevé est sélectionné comme candidat représentant le chiffre manuscrit. Une bound-
ing box est alors calculée autour de ce contour.
5.4 Extraction et préparation du chiffre

A partir de la bounding box, le masque binaire du chiffre est extrait. Une binarisation stricte est appliquée afin de garantir
des valeurs de pixels exclusivement égales a o (noir) ou 255 (blanc), correspondant respectivement au chiffre et au fond.
L'image est ensuite inversée de maniére a respecter le format MNIST : chiffre blanc sur fond noir.

5.5 Redimensionnement et alignement du barycentre

Le barycentre du chiffre est calculé a partir des pixels blancs du masque. Cette étape est essentielle afin de garantir un
centrage correct du chiffre, indépendamment de sa position initiale dans la boite englobante.

Le chiffre est ensuite redimensionné de facon proportionnelle pour tenir dans un carré de 20 x 20 pixels, tout en con-
servant son rapport d’aspect. Le barycentre du chiffre est aligné avec le centre de ce carré, situé en (10, 10).

5.6 Padding et format final

Un padding de 4 pixels noirs est réalisé autour de I'image 20 x 20, ce qui permet d’obtenir une image finale de taille 28 x 28,
conforme au format MNIST.

Unléger lissage gaussien est appliqué afin d’adoucir les transitions et de se rapprocher de 'apparence des chiffres manuscrits
du jeu de données d’origine.

5.7 Normalisation des valeurs

Avant l'inférence, les valeurs de pixels sont converties en nombres flottants et normalisées. Les valeurs sont d’abord
ramenées dans l'intervalle [0, 1], puis normalisées a 'aide de la moyenne et de I'écart-type de notre BDD (Base De Données)
personnelle :

w=0.1307 o = 0.3081

Cette étape garantit une distribution des entrées cohérente avec celle utilisée lors de 'entrainement du réseau.

5.8 Outil de validation visuelle

Afin de valider le bon fonctionnement du prétraitement, I'image 28 x 28 finale est affichée en overlay sur le flux vidéo,
apres agrandissement. Cet outil de débogage visuel permet de vérifier en temps réel :

+ le centrage du chiffre,
« la qualité de la binarisation,
+ la cohérence globale avec le format MNIST.

Cette visualisation a permis d’affiner les étapes de prétraitement et d’assurer une entrée optimale pour le réseau de neu-
rones.

TSI Page 9 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

5.9 Illustration du pipeline de prétraitement

Afin d'illustrer concretement les différentes étapes du pipeline de prétraitement décrit précédemment, la Figure 4 présente
trois exemples représentatifs. Les visualisations présentées ont été obtenues en exécutant exactement le méme code de
prétraitement que celui de l'application, sur des images d’entrée fixes, simulant le comportement réel du systéme.

b 8

Figure 4: llustration du pipeline de prétraitement sur trois exemples.

La zone d'intérét (ROI) est matérialisée par un carré bleu. Les contours détectés sont affichés en rouge et conduisent a la
définition de la bounding box entourant le chiffre manuscrit. La prédiction du réseau suite a la forward_pass y est indiquée
dans un coin. En haut a gauche, I'image prétraitée (28 x 28) est affichée en overlay.

Ces exemples mettent en évidence 'ensemble des concepts introduits précédemment : la restriction spatiale via la ROJ, la
sélection du contour pertinent, I'extraction et le centrage du chiffre, ainsi que la génération de 'image finale normalisée
destinée a l'inférence. L'affichage en overlay de I'image 28 x 28 permet de vérifier visuellement une forte similarité avec
les images du jeu de données MNIST, tant en termes de centrage que de contraste et de structure, confirmant ainsi la
cohérence du prétraitement avec les données d’entrainement.

6 Structure de I'implémentation C

Lapplication d’inférence en C/C++ a été congue selon une architecture modulaire privilégiant la séparation des respon-
sabilités. Cette approche facilite la maintenance, le débogage et I'extension future du systéme. L'implémentation repose
sur un découpage en modules spécialisés, chacun encapsulant une étape spécifique du pipeline de traitement.

6.1 Architecture modulaire

Le code est organisé autour de six modules principaux, dont les interfaces sont définies par des fichiers d’en-téte (.h) et les
implémentations dans des fichiers source (.c/.cpp). Cette séparation permet une compilation séparée et une intégration
flexible des composants. Le tableau 5 présente une vue synthétique de cette organisation.

TSI Page 10 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

Module Langage | Responsabilité

neural_network C Chargement des poids, structures de données des
modeles (MLP/CNN), inférence (forward pass)

process_frame C++ Orchestration du pipeline complet : acquisition,
prétraitement, inférence et affichage

contour_detection | C++ Détection de tous les contours dans I'image bina-
risée via OpenCV
contour_selector C++ Sélection du contour le plus pertinent selon des

critéres morphologiques

digit_extractor C++ Extraction, centrage barycentrique, padding et
normalisation au format MNIST

main C++ Point d'entrée, gestion des flux vidéo
(GStreamer), boucle principale

Table 5: Modules constitutifs de 'application C/C++.

6.2 Module neural_network

Le module neural_network constitue le coeur de I'inférence. Implémenté en C pur pour maximiser les performances et
la portabilité, il expose des structures de données correspondant exactement aux architectures Python décrites précédem-
ment.

Structures de données: Les structures MLPModel et CNNModel encapsulent I'ensemble des parameétres apprenables :
« MLPModel : 4 pointeurs vers les matrices de poids (W1, W2) et les vecteurs de biais (b1, b2).
« CNNModel : 6 pointeurs pour les deux couches convolutives (convl_w/b, conv2_w/D) et la couche dense finale
(fc_w/b).
Fonctions principales :

+ load_mlp_model / load_cnn_model : Allocation dynamique de la mémoire et lecture séquentielle des poids
depuis les fichiers . txt.

. forward_pass_mlp / forward_pass_cnn : Implémentation explicite de la propagation avant (produits ma-
triciels, convolutions, activations ReLU).

« get_prediction: Détermination de la classe prédite (argmax sur les scores de sortie).
« free_mlp_model / free_cnn_model : Libération de la mémoire allouée.
Limplémentation des convolutions a été réalisée manuellement (sans bibliothéque externe de calcul matriciel) afin de

maintenir un controle total sur les opérations et d’'optimiser la localité des accés mémoire.

6.3 Module process_frame

Le module process_frame joue le role d’orchestrateur. Il coordonne I'ensemble des étapes de traitement pour chaque
image acquise :

1. Extraction de la ROI : Définition d’'une zone d’intérét centrée (30 % x 60 % pour la caméra, image entiére pour les
tests).

2. Prétraitement initial : Conversion en niveaux de gris et binarisation adaptative.
3. Détection et sélection : Appel aux modules contour_detection et contour_selector.

4. Extraction du chiffre : Appel au module digit_extractor pour obtenir I'image 28 x 28 normalisée.

TSI Page 11 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

5. Inférence : Mesure du temps d’exécution et appel a forward_pass_mlp ou forward_pass_cnn.

6. Post-traitement : Calcul de la confiance via softmax, affichage des résultats (overlay, bounding box, texte).

Une structure FrameProcessorState maintient 'état entre deux trames (derniére prédiction, confiance, temps d’inférence)
pour éviter l'affichage répété d'informations identiques.

6.4 Module contour_detection

Ce module encapsule les fonctionnalités OpenCV de détection de contours :

« contour_det_find_all : Applique cv: :findContours sur I'image binarisée pour extraire tous les contours
fermés.

« contour_det_draw : Superpose visuellement les contours détectés sur I'image (utile pour le débogage).

6.5 Module contour_selector

La fonction contour_sel_find_best implémente la logique de sélection du contour candidat. Elle applique une série
de filtres morphologiques :

« Aire minimale : Rejet des contours trop petits (bruit) via CONTOUR_SEL_MIN_AREA = 150.0.
« Rapport d’aspect : Contrainte sur le ratio largeur/hauteur (0.2 < r < 2.0) pour éliminer les formes aberrantes.
+ Taux de remplissage : Ratio entre l'aire du contour et celle de sa boite englobante (privilégie les formes pleines).

Le contour ayant le score le plus élevé (produit de l'aire et du taux de remplissage) est retenu.

6.6 Module digit_extractor

Ce module implémente rigoureusement les spécifications MNIST décrites en section précédente. Il se décompose en
deux fonctions principales :

digit_extr_extract: Transformation de la région d’intérét binaire en image 28 x 28:
1. Calcul du barycentre du chiffre via digit_extr_compute_barycenter.
2. Redimensionnement proportionnel pour tenir dans 20 x 20 pixels (préservation du rapport d’aspect).
3. Centrage du barycentre au point (10, 10) via digit_extr_resize_and_center.
4. Ajout d’'un padding de 4 pixels noirs pour obtenir 28 x 28.

5. Application d’'un post-traitement morphologique (fermeture, lissage gaussien) viadigit_extr_apply_mnist_processing.

digit_extr_to_nn_input: Conversion de I'image 28 X 28 en vecteur d’entrée normalisé :
1. Conversion des pixels en flottants dans l'intervalle [0, 1].
2. Normalisation avec les statistiques du dataset d’entrainement (¢ = 0.1307, o = 0.3081).

3. Linéarisation en un tableau de 784 flottants.

TSI Page 12 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

6.7 Module main

Le point d’entrée de I'application gére I'infrastructure systeme :
« Paramétrage : Lecture des arguments (hote, ports, résolution).
« Chargement des modeéles : Initialisation des structures MLPModel et CNNModel.

« Pipelines GStreamer : Configuration des flux vidéo entrant (H.264 depuis rpicam-vid) et sortant (réencodage
H.264 pour diffusion TCP).

« Boucle principale : Lecture des trames, appel 4 process_frame, écriture dans le flux de sortie, mesure du débit
(EPS).

+ Gestion des signaux : Capture de SIGINT/SIGTERM pour un arrét propre.

6.8 Flux de données

La figure 5 illustre les dépendances et le flux de données entre les modules lors du traitement d'une trame.

main.cpp

Frame annotée Frame BGR

process_frame

Image seuillée

contour_detection

Liste contours

contour_selector Scores (10)

Meilleur contour

digit_extractor

Vecteur 784 floats

neural_network

Figure 5: Flux de données entre les modules lors du traitement d'une trame.

6.9 Compilation et dépendances

Le Makefile organise la compilation en deux cibles :
- app : Application principale pour flux caméra (main. cpp).

- app_images : Variante pour tests sur images statiques (main_images.cpp).

TSI Page 13 sur 19 SEMESTRE o9 - Jan. 2026

4 BORDEAUX

I N P Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

Les dépendances externes se limitent a :
+ OpenCV 4 : Traitement d’'images, gestion des flux GStreamer.
- Bibliothéeque mathématique standard (-1m) : Fonctions exp, sqrt pour les activations.
Les flags de compilation privilégient les performances (-03) tout en conservant les avertissements (-Wall). Loption

-std=c++17 est requise pour les fonctionnalités modernes de C++ utilisées dans les modules de traitement d’images.

6.10 Modularité et extensibilité

Cette architecture présente plusieurs avantages :

« Testabilité : Chaque module peut étre testé indépendamment (exemple : app_images pour valider le prétraite-
ment).

+ Réutilisabilité : Le module neural _network est totalement découplé d’'OpenCV et peut étre intégré dans d’autres
projets.

« Maintenabilité : Les responsabilités clairement délimitées facilitent les modifications (ex : ajout d'un nouveau
type de modele).

« Optimisation ciblée : Les parties critiques (convolutions, produits matriciels) peuvent étre remplacées par des
implémentations SIMD ou accélérées matériellement sans modifier 'interface.

7 Comparaison du MLP et du CNN avec une étude statistique

Afin d’évaluer les performances de nos deux architectures de réseaux de neurones, nous avons réalisé un benchmark sur
un jeu de test composé de 25 images manuscrites prétraitées selon le standard MNIST. Les métriques calculées incluent la
précision, les temps d’inférence moyens et les débits (FPS). Toutes ces mesures ont été obtenues sur un ordinateur équipé
d’une puce M2 Pro.

Métrique MLP CNN
Précision (%) 84.00 92.00
Temps moyen (ms) 0,033 0,138
Temps médian (ms) 0,027 0,124
Ecart-type temps (ms) 0,029 0,050
Temps min / max (ms) | 0,024/ 0,173 | 0,100/ 0,302
Débit (FPS) 30744 7251
Confiance moyenne 0,976 0,939
Nombre d’échantillons 25 25

Table 6: Comparaison statistique entre le MLP et le CNN sur le jeu de test

7.1 Précision de classification

Le CNN atteint une précision de classification de 92.00%, supérieure aux 84.00% obtenus par le MLP sur le méme jeu de
données. Cette différence s'explique par la capacité du CNN a exploiter les caractéristiques spatiales locales des images

grace aux convolutions, alors que le MLP traite les images aplaties et ne capture pas efficacement la structure spatiale des
chiffres.

TSI Page 14 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

7.2 Temps d’'inférence

Le temps d’'inférence moyen pour le MLP est de 0,033 ms par image, tandis que pour le CNN il est de 0,138 ms. Le MLP
est donc environ quatre fois plus rapide que le CNN. La variance des temps d’inférence est également plus faible pour le
CNN (0,050 ms) que pour le MLP (0,029 ms), reflétant une exécution plus stable sur cet échantillon.

On remarque également que la médiane est légérement supérieure a la moyenne, ce qui indique la présence de valeurs
extrémes (confirmé par les valeurs max). Certaines images prennent plus de temps a étre traitées, ce qui crée des outliers
dans la distribution des temps d’inférence.

On peut expliquer que certaines images prennent plus de temps a étre traitées par la complexité de leur contenu (plus de
pixels d’encre, contours irréguliers).

7.3 Matrice de confusion

Pour compléter cette analyse, nous affichons les matrices de confusion pour chaque architecture, afin de visualiser les
erreurs de classification pour chaque chiffre et d'identifier les classes les plus difficiles a distinguer.

3.0 3.0

MLP Confusion Matrix CNN Confusion Matrix

IS

True label
~ o u =
o o o o
e o o o
o o o o
s - °
. °
° &
True label
~ o w

®
°
°
°
°
°
®
°
°
°
°

05 05

©
°
°
°
°
©
°
°
°
°
°
°

6
Predicted label Predicted label

(@) MLP (b) NN

Figure 6: Matrices de confusion sur les 25 images de test.

7.4 Analyse

Le MLP présente un temps d'inférence tres faible et un débit extrémement élevé, ce qui le rend adapté a des applications
embarquées nécessitant un traitement rapide avec des contraintes strictes de latence. Cependant, sa précision moindre
peut limiter son utilisation lorsque la fiabilité est critique.

Le CNN offre une précision supérieure grace a sa capacité a extraire des caractéristiques spatiales complexes. Le temps
d’inférence reste tres faible (<o0,2 ms par image), mais plus élevé que celui du MLP. Cette architecture est donc plus adaptée
lorsqu’une haute précision est requise, méme si le cott en temps est légérement supérieur.

7.5 Interprétation des métriques

Il est important de noter que ces métriques doivent étre interprétées a leur juste valeur. En effet, elles permettent de
comparer les architectures sur une méme base (méme environnement et méme machine, ici un M2 Pro), mais elles different
des temps d’inférence que nous observons sur le Raspberry Pi 5. En pratique, les valeurs de temps mesurées ici manquent
de signification quantitative pour 'embarqué, et servent surtout a fournir un ordre de grandeur et un comparatif relatif
entre les architectures.

7.6 Conclusion

Ces résultats illustrent le compromis classique entre vitesse et précision : le MLP est plus rapide mais moins précis, tandis
que le CNN est plus précis mais légérement plus lent. Le choix de I'architecture dépend donc des priorités de 'application

TSI Page 15 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

finale.

Dans notre application déployée sur le Raspberry Pi s, le temps d'inférence pour le CNN est d’environ 0,6 ms (soit
~ 1667 prdictions/sec). Bien que ce temps concerne uniquement l'inférence et ne prenne pas en compte le temps
nécessaire pour le prétraitement, avec un flux maximal de 30 FPS sur le Raspberry Pi Camera Module v3, nous pouvons
facilement nous permettre d’utiliser le CNN pour bénéficier d'une meilleure précision, malgré le temps d’inférence plus
élevé.

8 Guide de déploiement sur Raspberry Pi

Cette section décrit le déploiement de l'application sur un Raspberry Pi 5 équipé du Raspberry Pi Camera Module v3. Ce
guide peut également étre retrouvé sur la page GitHub du projet.

8.1 Prérequis
- Raspberry Pi 5 : Docker, rpicam-vid

« Client: VLC

8.2 Installation

Assurez-vous que le Raspberry Pi est connecté au méme réseau que votre machine hote. Accédez-y via SSH et exécutez
les commandes suivantes :

git clone --no-checkout git@github.com:htalerfrais/edge-ai-cnn pib-digit-ai
cd pib-digit-ai

git sparse-checkout init --cone
git sparse-checkout set --skip-checks run.sh docker inference_c models

git checkout main
chmod +x run.sh

Ces commandes permettent de cloner uniquement les fichiers et dossiers essentiels au fonctionnement de I'application
afin de garder le dépot local 1éger (sans les documentations ou les fichiers d’entrainement par exemple). La structure du
répertoire sur la RPi5 est la suivante :
pib-digit-ai
| docker
L Dockerfile
| inference_c
main.cpp
Makefile

| models
cnn_weights.txt
mlp_weights.txt
| _run.sh

8.3 Démarrage de I'application

Il faut construire I'image Docker et lancer I'application :

./run.sh all # Build + start
./run.sh logs # Affiche les logs
vlc "tcp://IP:8554" # Affiche le flux depuis un client distant

TSI Page 16 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

8.4 Autres commandes utiles

./run.sh build # Build 1’image Docker
./run.sh start # Démarrer le conteneur
./run.sh stop # Arréter le conteneur
./run.sh view # Afficher le flux dans le terminal

9 Conclusion

Lors de ce projet, nous avons concu et déployé une application de reconnaissance de chiffres manuscrits fonctionnelle
sur Raspberry Pi 5, intégrant une pipeline compleéte, de 'acquisition vidéo a I'inférence temps réel. L'implémentation en
C/C++ et l'utilisation de Docker assurent a la fois de bonnes performances et une portabilité maitrisée.

L'étude de comparaison entre le MLP et le CNN a permis de mettre en évidence le compromis classique entre rapidité
et précision. Le MLP offre des temps d’inférence trés faibles mais une précision limitée sur des données réelles, quand le
CNN est plus robuste et plus fiable, mais au prix d’un surcoit en calcul (modéré). Les tests sur Raspberry Pi confirment
que ce surcout reste largement compatible avec une acquisition a 30 FPS, rendant le CNN plus pertinent pour l'application
finale.

Enfin, ce travail nous a permis de souligner I'importance d'un prétraitement rigoureux, aligné avec les données d’entrainement.
Les objectifs fixés ont été atteints, et 'application constitue une base solide pour de futures optimisations, notamment
'ajout de modeles ou le déploiement de I'application sur la caméra d’un ordinateur portable.

TSI Page 17 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

Annexes

A Spécifications et performances attendues pour I'application

Criteére Insuffisant | Satisfaisant | Excellent
Précision MLP sur MNIST < 95% 95-97% >97%
Précision CNN sur MNIST < 97% 97-99% > 99%
Précision MLP sur BDD personnel <60% 60-80% > 80%
Précision CNN sur BDD personnel <70% 70-85% > 85%
Précision avec caméra < 60% 60-80% > 80%
Temps inférence C (MLP) > 50ms 20-50ms < 20ms
Temps inférence C (CNN) >100ms 40-100ms < 4oms
Code fonctionnel Partiel Complet Optimisé

B Chargement du modele MLP

Ce code détaille I'allocation dynamique et la lecture séquentielle des poids a partir du fichier texte généré par le script
d’exportation.

MLPModel* load_mlp_model (x*filename) {
FILE *file = fopen(filename, "r"
(file == NULL) {
perror ("Erreur lors de 1l’ouverture du fichier de poids");
NULL;

MLPModel *model = (MLPModel*)malloc((MLPModel)) ;

model ->W1 *)malloc (HIDDEN_SIZE INPUT_SIZE =*
model ->b1 *)malloc (HIDDEN_SIZE ())
model ->W2 *)malloc (OUTPUT_SIZE HIDDEN_SIZE =*
model ->b2 *)malloc (OUTPUT_SIZE ())

i = 0; i < HIDDEN_SIZE * INPUT_SIZE; i++) {
(fscanf (file, "7%f", &model->W1i[i]) != 1)

i = 0; i < HIDDEN_SIZE; i++) {
(fscanf (file, "%f", &model->bi[i]) != 1)

i = 0; i < OUTPUT_SIZE * HIDDEN_SIZE; i++) {
(fscanf (file, "%f", &model->W2[i]) != 1) 3

i = 0; i < OUTPUT_SIZE; i++) {
(fscanf (file, "%f", &model->b2[i]) != 1)
}

fclose(file);
printf ("Modele charge avec succes depuis %s\n", filename);
model ;

Listing 1: Fonction de chargement du MLP (neural_network.c)

C Chargement du modeéele CNN

TSI Page 18 sur 19 SEMESTRE o9 - Jan. 2026

|NP Enseirb-
Développement d’une IA légére sur un systéme embarqué: Rapport de projet Matmeca

CNNModel* load_cnn_model (
FILE *file = fopen(filename,
(file == NULL) {

perror ("Erreur lors de 1l’ouverture du

NULL ;
}

CNNModel *model = (CNNModel*)malloc(

model ->convl_w = (
¢));

model ->convi_b (
model ->conv2_w = (
¢)) s

model ->conv2_b (
model ->fc_w ¢
(

model ->fc_b

success = 1;
success &= read_weights(file
KERNEL_SIZE) ;
success &= read_weights(file
success &= read_weights(file
KERNEL_SIZE) ;
success &= read_weights(file
success &= read_weights(file
success &= read_weights(file

fclose(file);
model ;

*)malloc (C1_0UT_CH

*filename) {
oy

*)malloc (C1_OUT_CH
*)malloc (C2_0UT_CH

*)malloc (C2_0UT_CH *
*)malloc (OUTPUT_SIZE
*)malloc (OUTPUT_SIZE

model ->convl_w,

model ->convl_b,
model ->conv2_w,

model ->conv2_b,
model ->fc_w,
model ->fc_b,

fichier de poids");

(CNNModel)) ;

C1_IN_CH * KERNEL_SIZE KERNEL_SIZE

¢))

C2_IN_CH * KERNEL_SIZE KERNEL_SIZE

¢));
FC_IN_FEATURES =* D)
());

C1_0UT_CH * C1_IN_CH KERNEL_SIZE

C1_0UT_CH) ;
C2_0UT_CH * C2_IN_CH KERNEL_SIZE

C2_0UT_CH) ;
OUTPUT_SIZE * FC_IN_FEATURES);
OUTPUT_SIZE) ;

Listing 2: Fonction de chargement du CNN (neural_network.c)

TSI

Page 19 sur 19

SEMESTRE o9 - Jan. 2026

	Introduction et analyse du problème
	Architecture MLP et CNN
	Architecture MLP
	Architecture CNN

	Résultats expérimentaux (entrainement et tests des modèles)
	Gestion du jeu de données et split stratifié
	Protocole d'entraînement
	Analyse des performances

	Export et chargement des poids
	Export des paramètres (Python)
	Chargement en mémoire (C)
	Correspondance des dimensions

	Description de la chaine de prétraîtement (inférence)
	Caractéristiques du jeu de données MNIST
	Réduction de la zone d’intérêt
	Binarisation et détection de contours
	Extraction et préparation du chiffre
	Redimensionnement et alignement du barycentre
	Padding et format final
	Normalisation des valeurs
	Outil de validation visuelle
	Illustration du pipeline de prétraitement

	Structure de l'implémentation C
	Architecture modulaire
	Module neural_network
	Module process_frame
	Module contour_detection
	Module contour_selector
	Module digit_extractor
	Module main
	Flux de données
	Compilation et dépendances
	Modularité et extensibilité

	Comparaison du MLP et du CNN avec une étude statistique
	Précision de classification
	Temps d'inférence
	Matrice de confusion
	Analyse
	Interprétation des métriques
	Conclusion

	Guide de déploiement sur Raspberry Pi
	Prérequis
	Installation
	Démarrage de l'application
	Autres commandes utiles

	Conclusion
	Annexes
	Spécifications et performances attendues pour l'application
	Chargement du modèle MLP
	Chargement du modèle CNN

