
TSI: Développement d’une IA légère sur un système embarqué
Rapport de projet

Maxime Hurtubise
& Hector Taler-Fraisse

Développement d’une IA légère sur un système embarqué: Rapport de projet

Table des matières

1 Introduction et analyse du problème 4

2 Architecture MLP et CNN 4
2.1 Architecture MLP . 4
2.2 Architecture CNN . 4

3 Résultats expérimentaux (entrainement et tests des modèles) 5
3.1 Gestion du jeu de données et split stratifié . 6
3.2 Protocole d’entraînement . 6
3.3 Analyse des performances . 6

4 Export et chargement des poids 7
4.1 Export des paramètres (Python) . 7
4.2 Chargement en mémoire (C) . 7
4.3 Correspondance des dimensions . 7

5 Description de la chaine de prétraîtement (inférence) 7
5.1 Caractéristiques du jeu de données MNIST . 8
5.2 Réduction de la zone d’intérêt . 8
5.3 Binarisation et détection de contours . 9
5.4 Extraction et préparation du chiffre . 9
5.5 Redimensionnement et alignement du barycentre . 9
5.6 Padding et format final . 9
5.7 Normalisation des valeurs . 9
5.8 Outil de validation visuelle . 9
5.9 Illustration du pipeline de prétraitement . 10

6 Structure de l’implémentation C 10
6.1 Architecture modulaire . 10
6.2 Module neural_network . 11
6.3 Module process_frame . 11
6.4 Module contour_detection . 12
6.5 Module contour_selector . 12
6.6 Module digit_extractor . 12
6.7 Module main . 13
6.8 Flux de données . 13
6.9 Compilation et dépendances . 13
6.10 Modularité et extensibilité . 14

7 Comparaison du MLP et du CNN avec une étude statistique 14
7.1 Précision de classification . 14
7.2 Temps d’inférence . 15
7.3 Matrice de confusion . 15
7.4 Analyse . 15
7.5 Interprétation des métriques . 15
7.6 Conclusion . 15

8 Guide de déploiement sur Raspberry Pi 16
8.1 Prérequis . 16
8.2 Installation . 16
8.3 Démarrage de l’application . 16
8.4 Autres commandes utiles . 17

TSI Page 2 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

9 Conclusion 17

Annexes 18
A Spécifications et performances attendues pour l’application . 18
B Chargement du modèle MLP . 18
C Chargement du modèle CNN . 18

TSI Page 3 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

1 Introduction et analyse du problème
Ce projet a pour but d’implémenter une application de détection et reconnaissance de chiffres manuscrits. L’application
doit être légère pour pouvoir être déployée sur une cible embarquée. Dans notre cas, le déploiement se fera sur une Rasp-
berry Pi 5 via une application complètement conteneurisée avec Docker. Les performances attendues sont renseignées en
annexe A. Ces dernières doivent être atteintes sur un dataset de test personnalisé de chiffres manuscrits imprimés puis
filmés par la caméra embarquée sur la Raspberry Pi 5.
Parmis les défis principaux de ce projet nous pouvons souligner :

• L’entrainement de modèles légers d’IA afin de les rendre performants non seulement surMNISTmais aussi sur des
données provenant d’un dataset personnalisé (ici notre dataset personalisé).

• L’implémentation de l’application entière via un code optimisé en C/C++, y compris les modèles de réseaux de
neurones (CNN et MLP) afin d’atteindre les performances attendues.

• La gestion des différents environnements de développement et execution via Docker.

2 Architecture MLP et CNN
Pour mener à bien le projet, l’entraînement des modèles et leur inférence au niveau de l’application se feront dans deux
environnements différents. Pour l’entrainement, nous utiliserons Pytorch avec Python dans un conteneur Docker con-
tenant toutes les bibliothèques nécéssaires aux expérimentations. L’applicatif supportant l’inférence sera lui déployé via
un autre conteneur et exécutera l’application en C/C++. Nous définissions deux architectures : un MLP et un CNN,
les plus simples possibles pour obtenir une baseline et comparer les résultats obtenus avec ceux attendus dans le cahier
des charges (Annexe A). Les modèles décrit par la suite sont définis avec Pytorch dans les fichiers suivants du livrable :
train_cnn.py et train_mlp.py.

2.1 Architecture MLP
L’architecture du MLP est extrêmement minimaliste et n’est composée que d’une seule couche caché de 512 neurones. La
couche cachée (Couche Dense 1) totalise (784 entrées× 512 neurones) + 512 biais = 401 920 paramètres. La couche de
sortie permet de revenir à 10 sorties chacune représentant la probabilité d’appartenance de l’image d’entrée à un chiffre.

Opération Type de couche Dimensions de sortie Paramètres
Entrée Image MNIST 1× 28× 28 0
Aplatissement Flatten 784 0
Couche Dense 1 Linéaire + ReLU 512 401 920

Couche de Sortie Linéaire 10 5 130

Total 407 050

Table 1: Détails de l’architecture du modèle MinimalMLP.

2.2 Architecture CNN
Le modèle CNN (Convolutional Neural Network) est conçu pour capturer les dépendances spatiales des chiffres tout en
restant léger pour l’inférence. Les résultats de nos entraînements (détaillés dans la partie suivante) montrent que cette
force lui permet de conserver une bonne précision pour des données qui s’éloignent du set d’apprentissage, contrairement
au MLP. Notre architecture de CNN utilise deux couches de convolution avec un stride de 2, permettant de diviser par
deux la résolution spatiale à chaque étape sans avoir recours à une couche de Pooling explicite.

TSI Page 4 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

Opération Configuration Dimension Sortie Activation Paramètres
Entrée Image MNIST 1× 28× 28 - 0
Convolution 1 16 filtres 5× 5, st. 2 16× 14× 14 ReLU 416

Convolution 2 32 filtres 5× 5, st. 2 32× 7× 7 ReLU 12 832

Aplatissement Flatten 1568 - 0
Couche de Sortie Linéaire 10 Softmax 15 690

Total 28 938

Table 2: Détails de l’architecture du modèle CNN.

Le nombre de paramètres dans chaque couche convolutive est calculé ainsi :

Nparams = (kd × kh × kw × Cin)Cout + Cout (1)

Dans cette expression, kd, kh et kw désignent respectivement la profondeur, la hauteur et la largeur du noyau de convo-
lution 3D, Cin correspond au nombre de canaux en entrée, Cout au nombre de filtres de la couche, et Cout représente les
biais associés à chaque filtre.

Analyse comparative : Bien que le CNN semble plus "complexe" conceptuellement, il est environ 14 fois plus léger
en nombre de paramètres que le MLP. Cette efficacité vient du partage de poids propre aux couches convolutives qui
devrait théoriquement offrir une meilleure robustesse face aux variations de position du chiffre dans l’image caméra.

3 Résultats expérimentaux (entrainement et tests des modèles)
Cette section détaille le protocole expérimentalmis en place pour l’entraînement desmodèles, la gestion du jeu de données
hybride, ainsi qu’une analyse des performances obtenues. Ci-dessous nous représentons des exemples de données origi-
nales de MNIST, de données de notre dataset personnel, et de ce dernier traité pour une conversion au format MNIST.
Nous utiliserons exclusivement les données de format MNIST pour les entrainement et l’inférence des modèles qui sont
dimmensionnés et entrainés spécifiquement pour ce format.

(a) Exemples MNIST (b) Données Personnelles (c) Sortie mises au format MNIST

Figure 1: Comparaison des données MNIST de référence, des données personnelles brutes et du résultat après la chaîne
de prétraitement.

TSI Page 5 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

3.1 Gestion du jeu de données et split stratifié

Ensemble Ratio Effectif Usage principal

Train 80% 200 Mise à jour des poids (Backpropagation)

Validation 10% 25 Suivi de la généralisation et tuning

Test 10% 25 Évaluation finale (données "aveugles")

Total 100% 250

Table 3: Répartition stratifiée du jeu de données personnel.

Le split est de type stratifié : la proportion de chaque classe (chiffres de 0 à 9) est conservée dans chaque sous-ensemble
(autant que possible comme les effectifs ne sont pas pairs pour la validation et le test). Les données sont organisées selon
la structure ImageFolder de PyTorch, facilitant leur chargement.

3.2 Protocole d’entraînement
Le défi majeur réside dans le déséquilibre entre le dataset MNIST (60 000 images) et notre dataset personnel (quelques
dizaines ou centaines d’images). Pour pallier à cela, nous avons adopté une stratégie de sur-échantillonnage : lors de la
création du train_dataset, les données personnelles sont répétées 50 fois et concaténées à MNIST.

Train_Total = MNIST ∪ (50× Perso_Train)

Les deux modèles ont été entraînés avec l’optimiseur Adam (learning rate de 0.001) et la fonction de perte CrossEn-
tropyLoss. Les statistiques de normalisation (µ et σ) ont été calculées sur l’ensemble global pour assurer une cohérence
parfaite entre l’entraînement et l’inférence en C. Nous notons la moyenne et la variance du dataset Train_total util-
isé pour l’entrainement du model afin d’effectuer la même normalisation au niveau de l’inférence en C. On obtient des
statistiques légèrement différentes de celles du dataset MNIST seul : Mean = 0.1305, Std = 0.3013

3.3 Analyse des performances
Les figures 6a et 6b présentent l’évolution de la perte (Loss) et de la précision (Accuracy) sur 10 epochs.

(a) Courbes MLP (b) Courbes CNN

Figure 2: Évolution de l’apprentissage sur les datasets hybrides.

Analyse du MLP : On observe une précision d’entraînement proche de 99 %, mais une précision de validation très
instable oscillant entre 84 % et 88 %. LaVal Loss a tendance à diverger, signe d’un overfittingmarqué. LeMLP "mémorise"
MNIST mais peine à généraliser les caractéristiques morphologiques de notre dataset personnel.

Analyse du CNN : Le CNN montre une meilleure robustesse. Bien que la précision de validation oscille également
(due à la petite taille du set de validation), elle atteint des pics plus élevés (jusqu’à 96 %). La perte de validation reste
globalement plus basse que celle du MLP, confirmant que l’extraction de caractéristiques spatiales par convolution est
mieux adaptée à la variabilité de nos prises de vues réelles.

TSI Page 6 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

4 Export et chargement des poids
Le transfert des poids (weights) et des biais (biases) du format PyTorch vers l’application C repose sur une symétrie
entre la classe Python et les structures de données en C.

4.1 Export des paramètres (Python)
PyTorch stocke les paramètres dans un dictionnaire ordonné (OrderedDict) suivant l’ordre de déclaration des couches. Le
script d’exportation parcourt ce dictionnaire via model.named_parameters() et linéarise chaque tenseur en une liste
continue de flottants avec la méthode .flatten() de NumPy.
L’ordre d’écriture dans le fichier .txt est séquentiel : Poids de la couche n, suivis de ses biais ; Poids de la couche n + 1,
suivis de ses biais ; ...

4.2 Chargement en mémoire (C)
Pour intégrer ces données, l’application utilise des structures (MLPModel et CNNModel) dont l’organisation mémoire
correspond à l’architecture des classes Python, permettant de charger le fichier .txt par une lecture séquentielle simple.
Le codeC alloue dynamiquement des pointeurs dimensionnés selon les paramètres dumodèle. La fonction de chargement
remplit ensuite ces espaces dans l’ordre exact de l’exportation (Extrait des fonctions de chargement en Annexe B et C)

4.3 Correspondance des dimensions
La validité de l’inférence dépend de la cohérence entre les constantes du header C (INPUT_SIZE, KERNEL_SIZE, etc.) et
l’architecture Python. Le tableau 4 détaille le mapping pour le modèle CNN.

Composant Python Structure C Taille (float)
layer1.0.weight model->conv1_w 400
layer1.0.bias model->conv1_b 16
layer2.0.weight model->conv2_w 12 800
layer2.0.bias model->conv2_b 32
fc.weight model->fc_w 15 680
fc.bias model->fc_b 10

Table 4: Mapping séquentiel entre les paramètres PyTorch et les buffers C.

5 Description de la chaine de prétraîtement (inférence)
La reconnaissance de chiffres manuscrits repose fortement sur la cohérence entre les données utilisées à l’entraînement
et celles fournies au réseau de neurones en phase d’inférence. Dans ce projet, les modèles ont été entraînés sur une base
de données personnelle, (mélange du jeu MNIST et de chiffres manuscrits). Les images de la BDD (Base De Données)
personnelle ont été soumises à un prétraitement similaire à celui de MNIST afin de respecter ses standards (format,
centrage et normalisation). Il est donc essentiel que les images issues de la caméra suivent rigoureusement ce même
pipeline de prétraitement afin de garantir des performances de reconnaissance optimales.

TSI Page 7 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

Flux Vidéo (Acquisition)

Définition de la ROI

Binarisation Adaptative

Filtrage & Sélection de contour

Extraction de la Bounding Box

Centrage Barycentrique (20× 20)

Padding & Lissage (28× 28)

Normalisation (µ, σ)

Vecteur d’entrée Inférence

Figure 3: Pipeline technique de prétraitement (version compacte).

5.1 Caractéristiques du jeu de données MNIST
Le jeu de données MNIST est composé d’images de chiffres manuscrits (0–9) présentant les propriétés suivantes :

• Les chiffres sont représentés en blanc sur un fond noir.

• Chaque chiffre est contenu dans une image de taille 28× 28 pixels.

• Le chiffre occupe une zone centrale équivalente à un carré de 20× 20 pixels.

• Le barycentre du chiffre est aligné avec le centre du carré 20× 20.

• Une bordure de 4 pixels est ajoutée autour de ce carré pour obtenir la taille finale 28× 28.

• Les valeurs des pixels sont normalisées avant l’inférence.

Afind’assurer une compatibilitémaximale avec lemodèle entraîné, ces contraintes doivent être rigoureusement respectées
lors du traitement des images issues de la caméra.

5.2 Réduction de la zone d’intérêt
Dans un premier temps, une Region of Interest (ROI) est définie au centre de l’image d’entrée. Cette ROI correspond à
environ 60% de la hauteur et 30 % de la largeur de l’image.
Cette restriction spatiale permet :

• de réduire la charge computationnelle,

• d’éviter la détection de contours parasites provenant de l’arrière-plan,

• de se concentrer sur la zone où l’utilisateur est le plus susceptible de présenter un chiffre manuscrit.

TSI Page 8 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

5.3 Binarisation et détection de contours
L’image contenue dans la ROI est convertie en niveaux de gris, puis binarisée à l’aide d’un seuillage adaptatif. Ce choix
permet de gérer des variations d’éclairage tout en mettant en évidence les structures du chiffre.
Une détection de contours est ensuite effectuée afin d’identifier les formes présentes. Chaque contour est évalué selon :

• son aire,

• son rapport largeur/hauteur,

• son taux de remplissage (rapport entre l’aire du contour et celle de sa boîte englobante).

Le contour présentant le score le plus élevé est sélectionné comme candidat représentant le chiffre manuscrit. Une bound-
ing box est alors calculée autour de ce contour.

5.4 Extraction et préparation du chiffre

À partir de la bounding box, le masque binaire du chiffre est extrait. Une binarisation stricte est appliquée afin de garantir
des valeurs de pixels exclusivement égales à 0 (noir) ou 255 (blanc), correspondant respectivement au chiffre et au fond.
L’image est ensuite inversée de manière à respecter le format MNIST : chiffre blanc sur fond noir.

5.5 Redimensionnement et alignement du barycentre
Le barycentre du chiffre est calculé à partir des pixels blancs du masque. Cette étape est essentielle afin de garantir un
centrage correct du chiffre, indépendamment de sa position initiale dans la boîte englobante.
Le chiffre est ensuite redimensionné de façon proportionnelle pour tenir dans un carré de 20 × 20 pixels, tout en con-
servant son rapport d’aspect. Le barycentre du chiffre est aligné avec le centre de ce carré, situé en (10, 10).

5.6 Padding et format final
Un padding de 4 pixels noirs est réalisé autour de l’image 20×20, ce qui permet d’obtenir une image finale de taille 28×28,
conforme au format MNIST.
Un léger lissage gaussien est appliqué afind’adoucir les transitions et de se rapprocher de l’apparence des chiffresmanuscrits
du jeu de données d’origine.

5.7 Normalisation des valeurs
Avant l’inférence, les valeurs de pixels sont converties en nombres flottants et normalisées. Les valeurs sont d’abord
ramenées dans l’intervalle [0, 1], puis normalisées à l’aide de lamoyenne et de l’écart-type de notre BDD (BaseDeDonnées)
personnelle :

µ = 0.1307 σ = 0.3081

Cette étape garantit une distribution des entrées cohérente avec celle utilisée lors de l’entraînement du réseau.

5.8 Outil de validation visuelle
Afin de valider le bon fonctionnement du prétraitement, l’image 28 × 28 finale est affichée en overlay sur le flux vidéo,
après agrandissement. Cet outil de débogage visuel permet de vérifier en temps réel :

• le centrage du chiffre,

• la qualité de la binarisation,

• la cohérence globale avec le format MNIST.

Cette visualisation a permis d’affiner les étapes de prétraitement et d’assurer une entrée optimale pour le réseau de neu-
rones.

TSI Page 9 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

5.9 Illustration du pipeline de prétraitement
Afin d’illustrer concrètement les différentes étapes du pipeline de prétraitement décrit précédemment, la Figure 4 présente
trois exemples représentatifs. Les visualisations présentées ont été obtenues en exécutant exactement le même code de
prétraitement que celui de l’application, sur des images d’entrée fixes, simulant le comportement réel du système.

Figure 4: Illustration du pipeline de prétraitement sur trois exemples.

La zone d’intérêt (ROI) est matérialisée par un carré bleu. Les contours détectés sont affichés en rouge et conduisent à la
définition de la bounding box entourant le chiffre manuscrit. La prédiction du réseau suite à la forward_pass y est indiquée
dans un coin. En haut à gauche, l’image prétraitée (28× 28) est affichée en overlay.

Ces exemples mettent en évidence l’ensemble des concepts introduits précédemment : la restriction spatiale via la ROI, la
sélection du contour pertinent, l’extraction et le centrage du chiffre, ainsi que la génération de l’image finale normalisée
destinée à l’inférence. L’affichage en overlay de l’image 28× 28 permet de vérifier visuellement une forte similarité avec
les images du jeu de données MNIST, tant en termes de centrage que de contraste et de structure, confirmant ainsi la
cohérence du prétraitement avec les données d’entraînement.

6 Structure de l’implémentation C

L’application d’inférence en C/C++ a été conçue selon une architecture modulaire privilégiant la séparation des respon-
sabilités. Cette approche facilite la maintenance, le débogage et l’extension future du système. L’implémentation repose
sur un découpage en modules spécialisés, chacun encapsulant une étape spécifique du pipeline de traitement.

6.1 Architecture modulaire
Le code est organisé autour de six modules principaux, dont les interfaces sont définies par des fichiers d’en-tête (.h) et les
implémentations dans des fichiers source (.c/.cpp). Cette séparation permet une compilation séparée et une intégration
flexible des composants. Le tableau 5 présente une vue synthétique de cette organisation.

TSI Page 10 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

Module Langage Responsabilité

neural_network C Chargement des poids, structures de données des
modèles (MLP/CNN), inférence (forward pass)

process_frame C++ Orchestration du pipeline complet : acquisition,
prétraitement, inférence et affichage

contour_detection C++ Détection de tous les contours dans l’image bina-
risée via OpenCV

contour_selector C++ Sélection du contour le plus pertinent selon des
critères morphologiques

digit_extractor C++ Extraction, centrage barycentrique, padding et
normalisation au format MNIST

main C++ Point d’entrée, gestion des flux vidéo
(GStreamer), boucle principale

Table 5: Modules constitutifs de l’application C/C++.

6.2 Module neural_network
Lemodule neural_network constitue le cœur de l’inférence. Implémenté en C pur pour maximiser les performances et
la portabilité, il expose des structures de données correspondant exactement aux architectures Python décrites précédem-
ment.

Structures de données : Les structures MLPModel et CNNModel encapsulent l’ensemble des paramètres apprenables :

• MLPModel : 4 pointeurs vers les matrices de poids (W1, W2) et les vecteurs de biais (b1, b2).

• CNNModel : 6 pointeurs pour les deux couches convolutives (conv1_w/b, conv2_w/b) et la couche dense finale
(fc_w/b).

Fonctions principales :

• load_mlp_model / load_cnn_model : Allocation dynamique de la mémoire et lecture séquentielle des poids
depuis les fichiers .txt.

• forward_pass_mlp / forward_pass_cnn : Implémentation explicite de la propagation avant (produits ma-
triciels, convolutions, activations ReLU).

• get_prediction : Détermination de la classe prédite (argmax sur les scores de sortie).

• free_mlp_model / free_cnn_model : Libération de la mémoire allouée.

L’implémentation des convolutions a été réalisée manuellement (sans bibliothèque externe de calcul matriciel) afin de
maintenir un contrôle total sur les opérations et d’optimiser la localité des accès mémoire.

6.3 Module process_frame
Le module process_frame joue le rôle d’orchestrateur. Il coordonne l’ensemble des étapes de traitement pour chaque
image acquise :

1. Extraction de la ROI : Définition d’une zone d’intérêt centrée (30 % × 60% pour la caméra, image entière pour les
tests).

2. Prétraitement initial : Conversion en niveaux de gris et binarisation adaptative.

3. Détection et sélection : Appel aux modules contour_detection et contour_selector.

4. Extraction du chiffre : Appel au module digit_extractor pour obtenir l’image 28× 28 normalisée.

TSI Page 11 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

5. Inférence : Mesure du temps d’exécution et appel à forward_pass_mlp ou forward_pass_cnn.

6. Post-traitement : Calcul de la confiance via softmax, affichage des résultats (overlay, bounding box, texte).

Une structureFrameProcessorStatemaintient l’état entre deux trames (dernière prédiction, confiance, temps d’inférence)
pour éviter l’affichage répété d’informations identiques.

6.4 Module contour_detection
Ce module encapsule les fonctionnalités OpenCV de détection de contours :

• contour_det_find_all : Applique cv::findContours sur l’image binarisée pour extraire tous les contours
fermés.

• contour_det_draw : Superpose visuellement les contours détectés sur l’image (utile pour le débogage).

6.5 Module contour_selector
La fonction contour_sel_find_best implémente la logique de sélection du contour candidat. Elle applique une série
de filtres morphologiques :

• Aire minimale : Rejet des contours trop petits (bruit) via CONTOUR_SEL_MIN_AREA = 150.0.

• Rapport d’aspect : Contrainte sur le ratio largeur/hauteur (0.2 ≤ r ≤ 2.0) pour éliminer les formes aberrantes.

• Taux de remplissage : Ratio entre l’aire du contour et celle de sa boîte englobante (privilégie les formes pleines).

Le contour ayant le score le plus élevé (produit de l’aire et du taux de remplissage) est retenu.

6.6 Module digit_extractor
Ce module implémente rigoureusement les spécifications MNIST décrites en section précédente. Il se décompose en
deux fonctions principales :

digit_extr_extract : Transformation de la région d’intérêt binaire en image 28× 28 :

1. Calcul du barycentre du chiffre via digit_extr_compute_barycenter.

2. Redimensionnement proportionnel pour tenir dans 20× 20 pixels (préservation du rapport d’aspect).

3. Centrage du barycentre au point (10, 10) via digit_extr_resize_and_center.

4. Ajout d’un padding de 4 pixels noirs pour obtenir 28× 28.

5. Application d’un post-traitementmorphologique (fermeture, lissage gaussien) viadigit_extr_apply_mnist_processing.

digit_extr_to_nn_input : Conversion de l’image 28× 28 en vecteur d’entrée normalisé :

1. Conversion des pixels en flottants dans l’intervalle [0, 1].

2. Normalisation avec les statistiques du dataset d’entraînement (µ = 0.1307, σ = 0.3081).

3. Linéarisation en un tableau de 784 flottants.

TSI Page 12 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

6.7 Module main
Le point d’entrée de l’application gère l’infrastructure système :

• Paramétrage : Lecture des arguments (hôte, ports, résolution).

• Chargement des modèles : Initialisation des structures MLPModel et CNNModel.

• Pipelines GStreamer : Configuration des flux vidéo entrant (H.264 depuis rpicam-vid) et sortant (réencodage
H.264 pour diffusion TCP).

• Boucle principale : Lecture des trames, appel à process_frame, écriture dans le flux de sortie, mesure du débit
(FPS).

• Gestion des signaux : Capture de SIGINT/SIGTERM pour un arrêt propre.

6.8 Flux de données
La figure 5 illustre les dépendances et le flux de données entre les modules lors du traitement d’une trame.

main.cpp

process_frame

contour_detection

contour_selector

digit_extractor

neural_network

Frame BGR

Image seuillée

Liste contours

Meilleur contour

Vecteur 784 floats

Scores (10)

Frame annotée

Figure 5: Flux de données entre les modules lors du traitement d’une trame.

6.9 Compilation et dépendances
Le Makefile organise la compilation en deux cibles :

• app : Application principale pour flux caméra (main.cpp).

• app_images : Variante pour tests sur images statiques (main_images.cpp).

TSI Page 13 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

Les dépendances externes se limitent à :

• OpenCV 4 : Traitement d’images, gestion des flux GStreamer.

• Bibliothèque mathématique standard (-lm) : Fonctions exp, sqrt pour les activations.

Les flags de compilation privilégient les performances (-O3) tout en conservant les avertissements (-Wall). L’option
-std=c++17 est requise pour les fonctionnalités modernes de C++ utilisées dans les modules de traitement d’images.

6.10 Modularité et extensibilité
Cette architecture présente plusieurs avantages :

• Testabilité : Chaque module peut être testé indépendamment (exemple : app_images pour valider le prétraite-
ment).

• Réutilisabilité : Lemoduleneural_network est totalement découplé d’OpenCVet peut être intégré dans d’autres
projets.

• Maintenabilité : Les responsabilités clairement délimitées facilitent les modifications (ex : ajout d’un nouveau
type de modèle).

• Optimisation ciblée : Les parties critiques (convolutions, produits matriciels) peuvent être remplacées par des
implémentations SIMD ou accélérées matériellement sans modifier l’interface.

7 Comparaison du MLP et du CNN avec une étude statistique
Afin d’évaluer les performances de nos deux architectures de réseaux de neurones, nous avons réalisé un benchmark sur
un jeu de test composé de 25 images manuscrites prétraitées selon le standardMNIST. Les métriques calculées incluent la
précision, les temps d’inférence moyens et les débits (FPS). Toutes ces mesures ont été obtenues sur un ordinateur équipé
d’une puce M2 Pro.

Métrique MLP CNN
Précision (%) 84.00 92.00
Temps moyen (ms) 0,033 0,138
Temps médian (ms) 0,027 0,124
Écart-type temps (ms) 0,029 0,050
Temps min / max (ms) 0,024 / 0,173 0,100 / 0,302
Débit (FPS) 30 744 7 251
Confiance moyenne 0,976 0,939
Nombre d’échantillons 25 25

Table 6: Comparaison statistique entre le MLP et le CNN sur le jeu de test

7.1 Précision de classification
Le CNN atteint une précision de classification de 92.00%, supérieure aux 84.00% obtenus par le MLP sur le même jeu de
données. Cette différence s’explique par la capacité du CNN à exploiter les caractéristiques spatiales locales des images
grâce aux convolutions, alors que le MLP traite les images aplaties et ne capture pas efficacement la structure spatiale des
chiffres.

TSI Page 14 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

7.2 Temps d’inférence
Le temps d’inférence moyen pour le MLP est de 0,033 ms par image, tandis que pour le CNN il est de 0,138 ms. Le MLP
est donc environ quatre fois plus rapide que le CNN. La variance des temps d’inférence est également plus faible pour le
CNN (0,050 ms) que pour le MLP (0,029 ms), reflétant une exécution plus stable sur cet échantillon.
On remarque également que la médiane est légèrement supérieure à la moyenne, ce qui indique la présence de valeurs
extrêmes (confirmé par les valeurs max). Certaines images prennent plus de temps à être traitées, ce qui crée des outliers
dans la distribution des temps d’inférence.
On peut expliquer que certaines images prennent plus de temps à être traitées par la complexité de leur contenu (plus de
pixels d’encre, contours irréguliers).

7.3 Matrice de confusion
Pour compléter cette analyse, nous affichons les matrices de confusion pour chaque architecture, afin de visualiser les
erreurs de classification pour chaque chiffre et d’identifier les classes les plus difficiles à distinguer.

(a) MLP (b) NN

Figure 6: Matrices de confusion sur les 25 images de test.

7.4 Analyse
Le MLP présente un temps d’inférence très faible et un débit extrêmement élevé, ce qui le rend adapté à des applications
embarquées nécessitant un traitement rapide avec des contraintes strictes de latence. Cependant, sa précision moindre
peut limiter son utilisation lorsque la fiabilité est critique.
Le CNN offre une précision supérieure grâce à sa capacité à extraire des caractéristiques spatiales complexes. Le temps
d’inférence reste très faible (<0,2 ms par image), mais plus élevé que celui duMLP. Cette architecture est donc plus adaptée
lorsqu’une haute précision est requise, même si le coût en temps est légèrement supérieur.

7.5 Interprétation des métriques
Il est important de noter que ces métriques doivent être interprétées à leur juste valeur. En effet, elles permettent de
comparer les architectures sur unemêmebase (même environnement etmêmemachine, ici unM2Pro), mais elles diffèrent
des temps d’inférence que nous observons sur le Raspberry Pi 5. En pratique, les valeurs de temps mesurées ici manquent
de signification quantitative pour l’embarqué, et servent surtout à fournir un ordre de grandeur et un comparatif relatif
entre les architectures.

7.6 Conclusion
Ces résultats illustrent le compromis classique entre vitesse et précision : le MLP est plus rapide mais moins précis, tandis
que le CNN est plus précis mais légèrement plus lent. Le choix de l’architecture dépend donc des priorités de l’application

TSI Page 15 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

finale.

Dans notre application déployée sur le Raspberry Pi 5, le temps d’inférence pour le CNN est d’environ 0,6 ms (soit
≈ 1667 prdictions/sec). Bien que ce temps concerne uniquement l’inférence et ne prenne pas en compte le temps
nécessaire pour le prétraitement, avec un flux maximal de 30 FPS sur le Raspberry Pi Camera Module v3, nous pouvons
facilement nous permettre d’utiliser le CNN pour bénéficier d’une meilleure précision, malgré le temps d’inférence plus
élevé.

8 Guide de déploiement sur Raspberry Pi
Cette section décrit le déploiement de l’application sur un Raspberry Pi 5 équipé du Raspberry Pi Camera Module v3. Ce
guide peut également être retrouvé sur la page GitHub du projet.

8.1 Prérequis
• Raspberry Pi 5 : Docker, rpicam-vid

• Client : VLC

8.2 Installation
Assurez-vous que le Raspberry Pi est connecté au même réseau que votre machine hôte. Accédez-y via SSH et exécutez
les commandes suivantes :

git clone --no-checkout git@github.com:htalerfrais/edge-ai-cnn pi5-digit-ai
cd pi5-digit-ai

git sparse-checkout init --cone
git sparse-checkout set --skip-checks run.sh docker inference_c models

git checkout main
chmod +x run.sh

Ces commandes permettent de cloner uniquement les fichiers et dossiers essentiels au fonctionnement de l’application
afin de garder le dépôt local léger (sans les documentations ou les fichiers d’entraînement par exemple). La structure du
répertoire sur la RPi5 est la suivante :

pi5-digit-ai
docker

Dockerfile
inference_c

main.cpp
Makefile
...

models
cnn_weights.txt
mlp_weights.txt

run.sh

8.3 Démarrage de l’application
Il faut construire l’image Docker et lancer l’application :

./run.sh all # Build + start

./run.sh logs # Affiche les logs
vlc "tcp://IP:8554" # Affiche le flux depuis un client distant

TSI Page 16 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

8.4 Autres commandes utiles
./run.sh build # Build l’image Docker
./run.sh start # Démarrer le conteneur
./run.sh stop # Arrêter le conteneur
./run.sh view # Afficher le flux dans le terminal

9 Conclusion
Lors de ce projet, nous avons conçu et déployé une application de reconnaissance de chiffres manuscrits fonctionnelle
sur Raspberry Pi 5, intégrant une pipeline complète, de l’acquisition vidéo à l’inférence temps réel. L’implémentation en
C/C++ et l’utilisation de Docker assurent à la fois de bonnes performances et une portabilité maîtrisée.
L’étude de comparaison entre le MLP et le CNN a permis de mettre en évidence le compromis classique entre rapidité
et précision. Le MLP offre des temps d’inférence très faibles mais une précision limitée sur des données réelles, quand le
CNN est plus robuste et plus fiable, mais au prix d’un surcoût en calcul (modéré). Les tests sur Raspberry Pi confirment
que ce surcoût reste largement compatible avec une acquisition à 30 FPS, rendant le CNNplus pertinent pour l’application
finale.
Enfin, ce travail nous a permis de souligner l’importance d’un prétraitement rigoureux, aligné avec les données d’entraînement.
Les objectifs fixés ont été atteints, et l’application constitue une base solide pour de futures optimisations, notamment
l’ajout de modèles ou le déploiement de l’application sur la caméra d’un ordinateur portable.

TSI Page 17 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

Annexes

A Spécifications et performances attendues pour l’application

Critère Insuffisant Satisfaisant Excellent
Précision MLP sur MNIST < 95% 95-97% > 97%
Précision CNN sur MNIST < 97% 97-99% > 99%
Précision MLP sur BDD personnel < 60% 60-80% > 80%
Précision CNN sur BDD personnel < 70% 70-85% > 85%
Précision avec caméra < 60% 60-80% > 80%
Temps inférence C (MLP) > 50ms 20-50ms < 20ms
Temps inférence C (CNN) > 100ms 40-100ms < 40ms
Code fonctionnel Partiel Complet Optimisé

B Chargement du modèle MLP
Ce code détaille l’allocation dynamique et la lecture séquentielle des poids à partir du fichier texte généré par le script
d’exportation.

1 MLPModel* load_mlp_model(const char *filename) {
2 FILE *file = fopen(filename , "r");
3 if (file == NULL) {
4 perror("Erreur lors de l’ouverture du fichier de poids");
5 return NULL;
6 }
7

8 // Allocation de la structure principale
9 MLPModel *model = (MLPModel *) malloc(sizeof(MLPModel));
10

11 // Allocation de la memoire pour chaque couche via les dimensions de neural_network.h
12 model ->W1 = (float*) malloc(HIDDEN_SIZE * INPUT_SIZE * sizeof(float));
13 model ->b1 = (float*) malloc(HIDDEN_SIZE * sizeof(float));
14 model ->W2 = (float*) malloc(OUTPUT_SIZE * HIDDEN_SIZE * sizeof(float));
15 model ->b2 = (float*) malloc(OUTPUT_SIZE * sizeof(float));
16

17 // Lecture sequentielle des Poids et Biais (Ordre identique a l’export Python)
18 for (int i = 0; i < HIDDEN_SIZE * INPUT_SIZE; i++) {
19 if (fscanf(file , "%f", &model ->W1[i]) != 1) break;
20 }
21 for (int i = 0; i < HIDDEN_SIZE; i++) {
22 if (fscanf(file , "%f", &model ->b1[i]) != 1) break;
23 }
24 for (int i = 0; i < OUTPUT_SIZE * HIDDEN_SIZE; i++) {
25 if (fscanf(file , "%f", &model ->W2[i]) != 1) break;
26 }
27 for (int i = 0; i < OUTPUT_SIZE; i++) {
28 if (fscanf(file , "%f", &model ->b2[i]) != 1) break;
29 }
30

31 fclose(file);
32 printf("Modele charge avec succes depuis %s\n", filename);
33 return model;
34 }

Listing 1: Fonction de chargement du MLP (neural_network.c)

C Chargement du modèle CNN

TSI Page 18 sur 19 SEMESTRE 09 - Jan. 2026

Développement d’une IA légère sur un système embarqué: Rapport de projet

1 CNNModel* load_cnn_model(const char *filename) {
2 FILE *file = fopen(filename , "r");
3 if (file == NULL) {
4 perror("Erreur lors de l’ouverture du fichier de poids");
5 return NULL;
6 }
7

8 CNNModel *model = (CNNModel *) malloc(sizeof(CNNModel));
9

10 // Allocation des buffers memoire
11 model ->conv1_w = (float*) malloc(C1_OUT_CH * C1_IN_CH * KERNEL_SIZE * KERNEL_SIZE *

sizeof(float));
12 model ->conv1_b = (float*) malloc(C1_OUT_CH * sizeof(float));
13 model ->conv2_w = (float*) malloc(C2_OUT_CH * C2_IN_CH * KERNEL_SIZE * KERNEL_SIZE *

sizeof(float));
14 model ->conv2_b = (float*) malloc(C2_OUT_CH * sizeof(float));
15 model ->fc_w = (float*) malloc(OUTPUT_SIZE * FC_IN_FEATURES * sizeof(float));
16 model ->fc_b = (float*) malloc(OUTPUT_SIZE * sizeof(float));
17

18 // Lecture des blocs de poids
19 int success = 1;
20 success &= read_weights(file , model ->conv1_w , C1_OUT_CH * C1_IN_CH * KERNEL_SIZE *

KERNEL_SIZE);
21 success &= read_weights(file , model ->conv1_b , C1_OUT_CH);
22 success &= read_weights(file , model ->conv2_w , C2_OUT_CH * C2_IN_CH * KERNEL_SIZE *

KERNEL_SIZE);
23 success &= read_weights(file , model ->conv2_b , C2_OUT_CH);
24 success &= read_weights(file , model ->fc_w , OUTPUT_SIZE * FC_IN_FEATURES);
25 success &= read_weights(file , model ->fc_b , OUTPUT_SIZE);
26

27 fclose(file);
28 return model;
29 }

Listing 2: Fonction de chargement du CNN (neural_network.c)

TSI Page 19 sur 19 SEMESTRE 09 - Jan. 2026

	Introduction et analyse du problème
	Architecture MLP et CNN
	Architecture MLP
	Architecture CNN

	Résultats expérimentaux (entrainement et tests des modèles)
	Gestion du jeu de données et split stratifié
	Protocole d'entraînement
	Analyse des performances

	Export et chargement des poids
	Export des paramètres (Python)
	Chargement en mémoire (C)
	Correspondance des dimensions

	Description de la chaine de prétraîtement (inférence)
	Caractéristiques du jeu de données MNIST
	Réduction de la zone d’intérêt
	Binarisation et détection de contours
	Extraction et préparation du chiffre
	Redimensionnement et alignement du barycentre
	Padding et format final
	Normalisation des valeurs
	Outil de validation visuelle
	Illustration du pipeline de prétraitement

	Structure de l'implémentation C
	Architecture modulaire
	Module neural_network
	Module process_frame
	Module contour_detection
	Module contour_selector
	Module digit_extractor
	Module main
	Flux de données
	Compilation et dépendances
	Modularité et extensibilité

	Comparaison du MLP et du CNN avec une étude statistique
	Précision de classification
	Temps d'inférence
	Matrice de confusion
	Analyse
	Interprétation des métriques
	Conclusion

	Guide de déploiement sur Raspberry Pi
	Prérequis
	Installation
	Démarrage de l'application
	Autres commandes utiles

	Conclusion
	Annexes
	Spécifications et performances attendues pour l'application
	Chargement du modèle MLP
	Chargement du modèle CNN

